MatematikaBILANGAN Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBentuk akarHasil dari 2akar5 x akar15 + akar12 adalah ... A. 7akar3 C. 60 B. 12akar3 D. 54akar3Bentuk akarBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0320Hasil dari 4 akar12 + akar75 - akar6 x 2 akar8 ad...0027Nilai dari akar1,5x4,5x6x8 =Teks videokita mempunyai soal hasil dari 2 √ 5 * √ 15 + √ 2 adalah untuk menyelesaikan soal tersebut kita akan menggunakan konsep dari perkalian dan penjumlahan bilangan akar soalnya akar 5 dikali dengan Akar 15 ditambah dengan akar 12 = kita kerjakan yang operasi perkalian terlebih dahulu kita kerjakan 2 akar 5 x dengan √ 15 nanti kita jumlahkan dengan √ 12 √ 5 dikali dengan Akar 15 dikalitugasnya 2 kemudian √ 5 * kan dengan √ 15 hasilnya adalah akar 75 ditambah akar 12 bentuk akarnya bisa kita ubah jadi 20 kalikan dengan 3 anak 25 X 300 = 79 √ 12 * 4 * 34 * 300 = 12 * 55 nya keluar dengan 5 kemudian √ 3 +suara ini tinggal akar 3 dikali 5 akar 3 ditambah akar 3 karena bentuk akarnya sesudah sama yaitu sama-sama akar 3 maka kita bisa langsung menjumlahkannya sehingga 10 ditambah 2 sama dengan 12 akar tidak jadi hasil dari 2 √ 5 * dengan √ 15 + √ 12 adalah 12 akar 3 jawabannya yang B sampai jumpa soal yang selanjutnyaContoh2: Akar pangkat 3 dari 1.771.561. Penyelesaian: Dari angka ³√ 1.771.561 dapat diekstraksi menjadi ³√ 1 771 561, karena ekstraksi cukup banyak sehingga proses pencarian pasangan pada persamaan newton akan berulang hingga semua ekstraksi habis. Dengan mengikuti langkah pada contoh sebelumnya dapat dihitung: F2 sin cos tan % ^pangkat √akar π eeuler log 7 8 9 ← AC 4 5 6 × ÷ 1 2 3 + - 0 . = A. Panduan Penggunaan Kalkulator Penting! Kalkulator ilmiah scientific di atas menggunakan mode [DEG] yang artinya degree atau derajat, ini digunakan untuk perhitungan trigonometri. Contoh cos 90 artinya cos 90°. Mode [DEG] umum digunakan di Indonesia dari tingkat SD, SMP/MA, dan SMA/K. Hati-hati dalam melakukan perhitungan trigonometri dengan kalkulator ilmiah yang dibeli di luar negeri. Kalkulator versi luar negeri biasanya menggunakan mode [RAD] sebagai mode standar, RAD artinya Radian 1 RAD = 57,296°. Mode [RAD] umum digunakan di tingkat pendidikan tinggi dengan konsentrasi keilmuan yang spesifik, misalnya Fisika murni. A1. Tombol Standar Kalkulator Ilmiah AC All Clear AC button menghapus seluruh layar kalkulator ← Backspace menghapus 1 digit terakhir F2 untuk untuk akses invers trigonometri sin-1 arcsin, cos-1 arccos, tan-1 arctan, rasio resiprokal trigonometri csc cosecant, sec secant, cot cotangent, akar pangkat 3 cubic root, logaritma natural ln, faktorial !, dan konstanta euler e A2. Tombol Kalkulator Aritmatika = untuk menjalankan perhitungan 1 = 1 + untuk menghitung penjumlahan 1 + 1 = 2 - untuk menghitung pengurangan 6 - 2 = 4 Tips pengurangan dan angka negatif minus Pengurangan 2 - 3 = -1Angka negatif -1 atau -1Keduanya mempunyai makna yang samaTanda "kurung" digunakan sebagai pemisah antar operasiContoh 2 + -3 = -1Tips pengurangan = penjumlahan dengan negatif × untuk menghitung perkalian 10 × 10 = 100 ÷ untuk menghitung pembagian 8 ÷ 4 = 2 . untuk memasukkan desimal + = 10 untuk memasukkan tanda kurung 1 × 3 - 1 = 1 × 2 = 2 Terkait konsep operasi aritmatika 1/2 kalkulator pecahan dengan pembagian dan kurung Menghitung 1/2 + 1/2 1÷2 + 1÷2 = 1 Menghitung 1+1/2+2 1+1 ÷ 2+2 = Terkait konsep pecahan A3. Tombol Kalkulator Perpangkatan dan Akar ^ untuk menghitung pangkat 2^3 = 2 × 2 × 2 = 8 Terkait konsep perpangkatan √ untuk menghitung akar kuadrat √144 = 12 Terkait konsep akar ³√ untuk menghitung akar pangkat 3 ³√8 = 2 Terkait konsep akar pangkat 3 A4. Tombol Kalkulator Persen dan Faktorial % untuk menghitung dengan fungsi kalkulator persen 45% = Terkait konsep persentase ! untuk menghitung faktorial 3! = 3 × 2 × 1 = 6 A5. Tombol Kalkulator Geometri dan Logaritma π untuk memasukkan nilai konstanta phi π = e untuk memasukkan nilai konstanta Euler e = ex menghitung nilai eksponensial euler e2 = exp2 = log untuk menghitung logaritma basis 10 log100 = 2 ln untuk menghitung logaritma natural lne = ln = 1 A6. Tombol Kalkulator Trigonometri Tombol Trigonometri Standar sin untuk menghitung sine sin90 = 1 cos untuk menghitung cosine cos90 = 0 tan untuk menghitung tangent tan90 = Infinity! Invers Trigonometri ARC sin⁻¹ untuk menghitung arcsin sin-10 = 0 cos⁻¹ untuk menghitung arccosin cos-10 = 90 tan⁻¹ untuk menghitung arctan tan-145 = Rasio Resiprokal Trigonometri csc untuk menghitung cosecant csc60 = sec untuk menghitung secant sec45 = cot untuk menghitung cotangent cot60 = Tips Menghitung Akar Kuadrat √144 pada layar tampil √144 = 12Karena 12 × 12 = 144 Tips Menghitung Akar Pangkat 3 ³√2 pada layar tampil ³√8 = 2Karena 2 × 2 × 2 = 8 Tips Menghitung Operasi Campuran 2 + 3 × 6 - 1 = 19 Tips Notasi e pada Layar Kalkulator online di atas menggunakan tingkat ketelitian eksponensial. Anda mungkin menemukan hasil dengan notasi ilmiah berikut, 1030 = 1e+30 B. Menggunakan Kalkulator dengan Keyboard Anda dapat menggunakan keyboard untuk memasukkan angka dan operasi aritmatika biasa 0 1 2 3 4 5 6 7 8 9 . keypad keyboard untuk memasukkan angka + - * / keypad keyboard untuk memasukkan operasi aritmatika Backspace untuk menghapus 1 digit angka Enter untuk menghitung sama dengan C. Riwayat Perhitungan Anda dapat menampilkan riwayat perhitungan atau menggunakannya untuk perhitungan selanjutnya. Klik Riwayat pada layar kalkulator untuk mengakses-nya. D. Apa itu Kalkulator Matematika Scientific? Kalkulator scientific atau kalkulator ilmiah adalah salah satu jenis kalkulator yang berfungsi untuk membantu menyelesaikan perhitungan matematika, teknik, dan ilmu sains. Kalkulator di atas merupakan contoh kalkulator online ilmiah scientific untuk menghitung matematika. Konversi Satuan Satuan Panjang Satuan Berat Satuan Waktu Satuan Suhu Satuan Arus Listrik Satuan Intensitas Cahaya Satuan Jumlah Zat E. Kelebihan Kalkulator Scientific Apa perbedaan kalkulator scientific dengan kalkulator biasa?Kalkulator scientific dapat menangani perhitungan matematika seperti operasi campuran, trigonometri, aljabar, dan biasa hanya dapat melakukan perhitungan aritmatika pada umumnya yaitu penjumlahan, pengurangan, perkalian, pembagian dan dapat dilengkapi perhitungan lainya seperti persen untuk mempermudah nilai guna. Apakah dapat menggunakan kalkulator biasa untuk memecahkan permasalah matematika?Kalkulator biasa sangat terbatas untuk memecah permasalahan matematika, hanya sebatas perhitungan yang sederhana. Sebagai contohnya, kalkulator biasa tidak dapat langsung menyelesaikan operasi campuran pada bilangan. Sekian artikel Kalkulator Online Matematika. Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih… Kalkulator Advernesia Belajar Online Gratis About Bibliography Disclaimer Privacy and Policy GDPR Contact Us and Advertise Theme by TagDiv Analyzed by Google Analytic Ads by AdSense ×Riwayat Hitung Klik riwayat hasil perhitungan untuk menggunakannya ke layar kalkulator Catatan Klik " × " untuk kembali 2akar 3 dikali 4 akar 5 - 16614245. putrifebrni putrifebrni 29.07.2018 Matematika Sekolah Menengah Pertama terjawab 2 akar 3 dikali 4 akar 5 2 Lihat jawaban Iklan Iklan Kafiya Kafiya Iklan Iklan rmdn01 rmdn01 semoga membantu Iklan Iklan Pertanyaan baru di Matematika. YPMahasiswa/Alumni Universitas Negeri Makassar05 Januari 2022 0521Halo Jupri, aku bantu jawab ya. Jawaban √3 Ingat! √a x b = √a x √b Asumsikan soal yang dimaksud adalah ½ √2 x ½ √3/½ x ½ √2 = ... Pembahsan ½ √2 x ½ √3/½ x ½ √2 = ¼√6/¼√2 = √6/√2 = √6/√2 x √2/√2 = √12/2 = ½ √4 x 3 = ½ x 2 √3 = √3 Dengan demikian diperoleh nilai dari ½ √2 x ½ √3/½ x ½ √2 = √3 Semoga membantu ya Ÿ˜ŠYA5³×3 pangkat min 3×2 per5âµÃ—³pangkat min 4×2²AA1/2+1/3√3 /1/2√3+1/2 Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan! Dalamproses menyederhanakan bentuk akar ini, ada beberapa syarat yang harus kamu perhatikan, seperti: 1. Tidak memuat faktor yang pangkatnya lebih dari satu. √a = ; a > 0 ⇒ Bentuk sederhana (rasional) √a³ dan √a5 ⇒ Bukan bentuk sederhana. 2. Tidak adanya bentuk akar pada penyebut. √a / b ⇒ Bentuk sederhana (rasional)
Bentuk akar matematika merupakan akar dari suatu bilangan-bilangan yang hasilnya bukan termasuk ke dalam bilangan rasional bilangan yang meliputi bilangan cacah, bilangan prima, serta bilangan-bilangan lain yang terkait atau bilangan irasional yakni bilangan yang hasil baginya tidak pernah berhenti.Bentuk akar adalah bentuk lain untuk menyebutkan suatu bilangan yang berpangkat. Bentuk akar termasuk ke dalam bilangan irasional di mana bilangan irasional tidak bisa disebutkan dengan menggunakan bilangan pecahan a/b, a serta b bilangan bulat a dan b ≠ 0. Bilangan dari bentuk akar merupakan suatu bilangan yang ada di dalam tanda √ yang disebut sebagai tanda akar. Beberapa contoh bilangan irasional di dalam bentuk akar yakni √2, √6, √7, √11 dan lain sebagainya. Sementara untuk √25 bukanlah bentuk akar, sebab √25 = 5 5 merupakan bilangan rasional sama saja angka 25 bentuk akarnya yaitu √ akar “√” pertama kali diperkenalkan oleh seorang matematikawan asal Jerman yang bernama Christoff dalam bukunya dengan judul Die Coss. Simbol tersebut dipilih sebab mirip dengan huruf ” r ” yang mana diambil dari kata “radix”, yang merupakan bahasa latin bagi akar pangkat bilangan berpangkat yang mempunyai beberapa sifat-sifat, bentuk dari akar pun juga mempunyai beberapa sifat, diantaranya yakni√a2 = a√a x b = √a x √b ; a ≥ 0 dan b ≥ 0√a/b = √a/√b ; a ≥ 0 dan b ≥ 0Selengkapnya mengenai bentuk akar, simak ulasan di bawah Akar MatematikaCara Menyederhanakan Bentuk Akar MatematikaOperasi Aljabar pada Bentuk Akar1. Operasi Penjumlahan dan Pengurangan Bentuk Akar2. Operasi Perkalian Bentuk AkarSifat Bentuk AkarMerasionalkan Bentuk AkarContoh Soal dan PembahasanSeperti yang telah disebutkan di atas, bentuk akar matematika merupakan akar dari suatu bilangan-bilangan yang hasilnya bukan termasuk ke dalam bilangan rasional. Bilangan yang meliputi bilangan cacah, bilangan prima, serta bilangan-bilangan lain yang terkait atau bilangan irasional yakni bilangan yang hasil baginya tidak pernah berhenti.Atau singkatnya, bentuk akar merupakan akar dari bilanganrasionalyang memiliki hasil rasional merupakan sebuah bilangan yang bisa dinyatakan ke dalam betuk a/b pecahan. Di mana a dan b merupakan bilangan bulat dan b ≠ contoh bilangan 3 bisa kita nyatakan dalam bentuk 6/2, 9/3, 18/6 dan lain untuk bilangan irasional merupakan sebuah bilangan yang tidak bisa diubah ke dalam bentuk pecahan a/b di mana a dan b merupakan suatu bilangan √ erat kaitannya dengan yang namanya eksponensial. Bentuk akar adalah salah satu contoh bilangan irasional, yakni bilangan yang tidak bisa dinyatakan ke dalam bentuk a/b, dengan ketentuan a dan b merupakan bilangan bulat di mana b ≠ contohnya adalah nilai dari π = 3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510…, Hal tersebut disebabkan phi tidak dapat dinyatakan ke dalam bentuk pecahan maka nilai dari π termasuk ke dalam bilangan dari definisi mengenai akar, sekarang muncul sebuah dengan adanya tanda √ dalam suatu bilangan akan menjamin bahwa bilangan itu adalah bentuk akar? Maka jawabannya tentu saja TIDAK. Sebab, terdapat berbagai bilangan yang dituliskan dengan tanda akar, namun hasilnya adalah bilangan contoh√9 bukan merupakan bentuk akar, karena √9 = 3 bilangan rasional.√0,25 bukan merupakan bentuk akar, karena √0,25 = 0,5 bilangan rasional.√3 adalah bentuk akar.√5 adalah bentuk Menyederhanakan Bentuk Akar MatematikaBeberapa bentuk akar bisa kita sajikan ke dalam bentuk yang lebih sederhana. Untuk masing-masing bilangan a dan b yang merupakan bilangan bulat positif, maka berlaku rumus atau persamaan seperti berikut ini√a x b = √a x √bDengan a atau b harus bisa dinyatakan ke dalam bentuk kuadrat contoh√108 = √36 x √3 = 6 √3√1/8 = √1/16 x 2 = √1/16 x √2 = 1/4 √2Operasi Aljabar pada Bentuk Akar1. Operasi Penjumlahan dan Pengurangan Bentuk AkarBagi masing-masing a, b dan c yang merupakan bilangan rasional positif, maka akan berlaku rumus atau persamaan seperti berikut iniRumus operasi penjumlahan bentuk akara√c + b√c = a + b √cRumus operasi pengurangan bentuk akara√c – b√c = a – b √c2. Operasi Perkalian Bentuk AkarUntuk masing-masing a, b dan c yang merupakan bilangan rasional positif, maka akan berlaku rumus atau persamaan seperti berikut ini√a x √b = √a x bSebagai contoh√4 x √8 = √4 x 8 = √32 = √16 x 2 = 4 √2√4 4 √4 -√2 = √4 x 4 √4 – √4 x √2 = 4 x √16 – √8= 4 x 4 – √4 x √2= 16 – 2 √2Rangkuman Operasi Bentuk Akar√a + √b2 = a + b + 2√ab√a – √b2 = a + b – 2√ab√a – √b√a + √b = a – ba – √ba + √b = a2 – bSifat Bentuk AkarAdapun beberapa sifat operasi bentuk akar seperti di bawah ini√a2=a, dengan a adalah bilangan real positif.√a x √b = √ab, di mana a dan b merupakan bilangan real positif.√a/ √b = √a/b, dengan a ≥ 0 dan b > + b√c = a + b√c dengan a, b, c merupakan bilagan real, serta c ≥ – b√c = a – b√c dengan a, b, c merupakan bilagan real, serta c ≥ x b√d = ab √cd, dengan a,b, c, d, merupakan bilangan real, serta a, b ≥ d√b = c/d√a/b dengan a, b, c merupakan bilangan real, serta a, b ≥ Bentuk AkarUntuk memudahkan pemakaian bentuk akar dalam operasi aljabar, maka penulisan dari bentuk akar dituliskan dalam bentuk yang paling rasional sederhana.Cara untuk merasionalkan bentuk akar harus memenuhi beberapa syarat-syarat tertentu. Syarat-syarat tersebut ialah sebagai berikut1. Tidak memuat faktor yang pangkatnya lebih dari contoh√x, x > 0 → bentuk sederhana√x5 dan √x3 → bukan bentuk sederhana2. Tidak ada bentuk akar pada contoh√x/ x → bentuk sederhana1/ √x → bukan bentuk sederhana3. Tidak mengandung pecahanSebagai contoh√10/ 2 → bentuk sederhana√5/√2 → bukan bentuk sederhanaKemudian, bagaimana caranya untuk merasionalkan penyebut pecahan dalam bilangan bentuk akar?Merasionalkan penyebut pecahan dalam bilangan bentuk akar itu berarti, mengubah penyebut dari pecahan yang berbentuk akar menjadi bentuk rasional sederhana.Cara atau metode untuk merasionalkan penyebut pecahan yakni dengan cara mengalikan pembilang dan juga penyebut pecahan tersebut dengan bentuk akar yang sekawan dari penyebut tiga cara merasionalkan penyebut bentuk pecahan bentuk akar, diantaranya yaitu1. Pecahan bentuk a/ √bDiselesaikan dengan cara mengalikan √b/√bSehingga a/ √b = a/ √b x √b/√b = a√b /b2. Pecahan bentuk a/ b+√cDiselesaikan dengan cara mengalikan b – √c/ b – √cSehingga, a/ b + √c = a/ b + √c x b – √c/ b – √c = ab – √c/ b2 – c3. Pecahan bentuk a/ √b + √cDiselesaikan dengan cara mengalikan √b – √c/ √b – √cSehingga, a/ √b + √c = a/ √b + √c x √b – √c/ √b – √c = a√b – √c/ b-cContoh Soal dan PembahasanBerikut ini akan kami berikan beberapa contoh soal mengenai bentuk akar sekaligus pembahasannya, simak baik-baik sampai selesai Soal Bentuk AkarDiantara bilangan-bilangan di bawah ini, manakah yang termasuk bentuk akar? Apabila termasuk bentuk akar, berikan 1.√7Jawab √7 adalah bentuk akarSoal 2.√1/16Jawab √1/16 bukan merupakan bentuk akar, karena √1/16 = ¼ adalah bilangan rasionalSoal 3√27 bukan merupakan bentuk akar, karena 3√27 = 3 adalah bilangan rasionalSoal 4.√53Jawab√53 adalah bentuk akarSoal bukan merupakan bentuk akar, karena 3√0,125 = 0,5 adalah bilangan rasionalSoal adalah bentuk Soal Cara Menyederhanakan Bentuk AkarNyatakan bilangan-bilangan di bawah ini ke dalam bentuk akar yang paling sederhana!Soal 1.√27Jawab√27 = √9 x √3 = 3 √3Soal 2.√99Jawab√99 = √9 x √11 = 3 √11Soal 3.√50Jawab √50 = √25 x √2 = 5 √2Soal 4.√96Jawab√96 = √16 x √6 = 4 √3Soal √44Jawab4 x √44 = 4 x √4 x √11 = 4 x 2 x √11 = 8 √11Soal √500Jawab2 √500 = 2 x √5 x √100= 2 x 18 x √5 = 20 √5Contoh Soal Operasi Penjumlahan dan Pengurangan Bentuk AkarSederhanakanlah bentuk-bentuk di bawah iniSoal √7 + 5 √7 – √7Jawab3 √7 + 5 √7 – √7 = 3 + 5 -1 √7 = 7 √7Soal √2 – 2 √8 + 4 √18Jawab=5 √2 – 2 √8 + 4 √18= 5 √2 – 2 √4 x √2 + 4 √9 x √2= 5 √2 – 2 2 x √2 + 4 3 x √2= 5 √2 – 4 √2 + 12 √2= 5 – 4 + 12 √2= 13 √2Contoh Soal Operasi Perkalian Bentuk AkarSederhanakanlah bentuk-bentuk di bawah ini!Soal 1.√7 – √5 √7 + √5JawabJika terdapat angka yang dikalikan sama, hanya berbeda operasi plus + serta minus -, maka kita pakai rumus depan kali depan, belakang kali belakang, seperti berikut ini a + b a – b = a2 –b2√7 – √5 √7 + √5 = √7 x √7 + -√5 x √5= √49 – √25= 7-5=12Soal 2.√3 – √22Jawab Kita pakai rumus a – b a – b = a2 – 2ab + b2, sehingga√3 – √22 = √3 – √2 √3 – √2= √3 x √3 + √3 x -√2 + -√2 x √3 + -√2 x -√2= √9 – √6 – √6 – √4= 3 – 2 √6 + 2= 5 -2 √6Soal √3 x 5 √3 x 2 √3JawabKita pakai rumusa √b x c √b x d √b = a x c x d √b x √b x √b = a x c x d x b √b3 √3 x 5 √3 x 2 √3 = 3 x 5 x 2 x 3 √3 = 90 √3Demikianlah ulasan singkat kali ini yang dapat kami sampaikan mengenai bentuk akar matematika. Semoga ulasan di atas mengenai bentuk akar matematika dapat kalian jadikan sebagai bahan belajar kalian.
Bentukakar. Jika n bilangn asli dengan n > 1 dan a ∈ R, maka akar pangkat n bilangan a ditulis : didefinisikan sebagai berikut : Menyederhanakan bentuk akar. p < n dan q < n. Operasi aljabar pada bentuk akar. Pahami terlebih dahulu ini RRRiskigabriel R20 Agustus 2019 1336Pertanyaan1050Belum ada jawaban 🤔Ayo, jadi yang pertama menjawab pertanyaan ini!Mau jawaban yang cepat dan pasti benar?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuTanya ke ForumRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Chat TutorTemukan jawabannya dari Master Teacher di sesi Live Teaching, GRATIS!Klaim Gold gratis sekarang!Dengan Gold kamu bisa tanya soal ke Forum sepuasnya, Cara1 Akar Kuadrat Excel. Rumusnya yaitu ketikan pada cell C5. =16^ (1/2) Maka akan didapatkan berupa hasil akar kuadrat √16 = 4, berupa bilangan 4. Contoh akar pangkat tiga 3 √8 = 2. Ketikan rumusnya. =8^ (1/3) Maka akan didapatkan berupa hasil akar pangkat tiga 3 √8 = 2 berupa bilangan 2. MatematikaBILANGAN Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARMerasionalkan Bentuk AkarMerasionalkan Bentuk AkarBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0203Jika penyebutnya dirasionalkan, maka bentuk lain dari a...0247Bentuk sederhana dari 2 akar3 / 2 akar6 + 3 akar2...0213Bentuk sederhana dari 3 akar2 + 2 akar3/2 akar3 ...0318Bentuk sederhana dari 2a^3 b^-5 c^2/6a^9 b^2 c^-1 ada...Teks videoTerdapat pertanyaan yaitu 2 Akar 15 dikali 6 akar 5 dibagi 3 akar 3 Nah untuk mencari hasilnya maka kita gunakan sifat jika terdapat akar a dikalikan akar B = akar a b dan sebaliknya jika terdapat akar AB maka = akar a-j kalikan akar B Nah di sini untuk Akar 15 adalah = akar x * 3 maka a = √ 5 dikalikan dengan √ 3 sehingga untuk pertanyaan tersebut b. Tuliskan Akar 15 dikalikan 6 akar 5 dibagi 3 akar 3Sama dengan yaitu 2 dikalikan dengan √ 5 * kan dengan √ 3 * 65 yang di sini dibagi 3 = disini untuk akar 3. Jika dibagi dengan 3 akar 3 maka akar 3 nya kita karena hasilnya = 1 sehingga tersisa 3 maka 2 dikalikan akar 5 dikali 6 akar 5 = 6 dikalikan 5 3 3 dan 6 kita bagi dengan 3 maka penyebutnya menjadi 16 = = dikalikan 2 dikalikan = 10 jadi hasilnya sama dengan 2Atau jawabannya C sekian sampai jumpa di pertanyaan berikutnya. 97dXF.